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An experimental-theoretical method of determination of the absorption coefficients in laser treatment of metals
has been proposed based on the solution of the boundary-value axisymmetric problem of heat conduction for
a half-space and metallographic measurements of the dimensions of the thermal-hardening zone.

Introduction. In investigating numerous processes occurring in a deformed medium under the action of pulsed
laser irradiation, one must know, where possible, the reflection coefficient R or the absorptivity A = 1 − R of the irra-
diated material with the highest degree of exactness. The values of the indicated parameters depend, first of all, on the
electromagnetic wavelength, grade of steel (mainly its chemical composition), temperature, finish of the working sur-
face of a metal, and properties of the environment [1].

It is clear that the parameters R and A in laser irradiation of materials do not coincide with the corresponding
Fresnel coefficients which are found experimentally or numerically for ideally smooth and clean surfaces at low spe-
cific powers of electromagnetic radiation not changing the properties of the metal in the irradiation zone. At the same
time, a laser pulse even of a low specific power (Q F 108 W ⁄ m2) substantially affects the structure and chemical com-
position of the irradiated material, initiating different thermochemical processes, such as nitriding and oxidation, with
subsequent change in the optical properties of the surface layer. On the other hand, with such a power the quantity of
the energy absorbed is sufficient to heat a thin near-surface layer about 1 µm thick to a temperature much higher than
the environment temperature. Then a thin film "smearing" the boundary between the treated surface and the environ-
ment additionally appears on the path of the incident radiation. A diffusion component changed in the process of irra-
diation appears in the reflected radiation in addition to the mirror component, and the mechanism of reflection from
such a layer itself depends on the physical properties of the material and the technology of the surface finish, the in-
tensity of the incident radiation, and the space-time distribution of the pulses employed (monopulse, spike generation,
etc.) [2].

Thus, determination of the coefficient of reflection (absorption) in the case of pulsed action of concentrated
heat fluxes on metals is a difficult problem calling for simultaneous account for the influence of many factors. This
problem still remains to be finally solved, although it has been the focus of an ample amount of literature [3–11].

The absorption coefficient A is most frequently determined experimentally with the use of the definitive equal-
ity A = Q2/(Q1 + Q2). Consequently, one must simultaneously determine the values of Q1 and Q2. This is usually done
by calorimetric methods, which, unfortunately, possess a low accuracy of measurement. Furthermore, we should take
into account that Q2 additionally contains the diffusion radiation component directed deep into the treated specimen.
Its recording calls for calorimeters of special design which simultaneously possess a large aspect angle and a high ab-
sorptivity.

For certain temperature levels not exceeding the melting temperature we have polymorphous transformations
or characteristic changes in the internal structure (recrystallization, grain growth, etc.) of metals. These changes result
in a new crystal structure which is not identical to the initial structure. For high cooling rates, in particular, a so-called
martensite structure is formed, whose main component is martensite — a supersaturated solution of carbon in α iron.
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The portions of material with such a structure have a higher-than-average strength and wear resistance, which is
widely used in creating a protective surface layer in many structural elements of modern machines. A martensite layer
whose depth can very accurately be measured by metallographic methods with the use of a scanning microscope is
formed in local heating of steels [12–16].

The present investigation seeks to develop an experimental-theoretical procedure of determination of the effec-
tive absorption coefficient based on the analytical solution of the corresponding boundary-value problem of heat con-
duction for a semi-infinite body and on a sufficiently accurate measurement, by metallographic methods, of the
dimensions of the zone of structural changes occurring in metals under the action of laser irradiation.

Temperature Field. The action of a laser beam on metal under certain conditions is equivalent to heating it
by a distributed surface source of prescribed specific power (by a heat flux with a known intensity). Therefore, the
boundary-value problem of heat conduction for a semi-infinite body which is heated by a pulsed laser operating in the
quasistationary regime of radiation will be formulated in the form [17]
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We take the normal (Gauss) distribution of the heat-flux intensity (Fig. 1)

q (r) = AQ exp (− Kcr
2) ,   r ≥ 0 . (6)

The concentration coefficient Kc in formula (6) is related to the radius a of the heat flux by the relation [1]

Kc = a
−2

 , (7)

while the total specific power Q of the luminous flux incident on the metal surface over the period ts is equal to

Q = 
E

πa
2
ts

 . (8)

Fig. 1. Scheme of heating and formation of the martensite structure of metal.
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In the mathematical model (1)–(8), it is assumed that the specific power of radiation is such that no melting
and evaporation of the near-surface layer are observed; the loss of thermal energy from the surface of the irradiated
specimen modeled by the half-space due to radiation and convection is insignificant; the thermophysical properties of
the material are independent of temperature.

The solution of the boundary-value problem of heat conduction (1)–(5), constructed by taking successively the
integral Hankel transform of zero order with respect to the radial variable r and the Laplace transform with respect to
the time t, has the form
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0

∞
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When ts → ∞ (Fos → ∞), relation (11) yields Φ(ξ, Z, Fo) = Φ0(ξ, Z, Fo)H(Fo) and the known solution for the
quasistationary regime of heating [17].

A numerical analysis according to formulas (9)–(12) has been made for the dimensionless temperature T∗ . On
the surface of the body, the maximum temperature is attained at the instant t = ts of switching-off of the laser, while
in the near-surface layer it is attained at t = th = ts + ∆t (Fig. 2). The delay time ∆t rapidly increases with distance
from the working surface of the body (Fig. 3). This effect was noted earlier in [18].

Absorption Coefficient. To determine the parameter ∆t we employ the condition of attainment of the maxi-
mum value inside the body at a point with coordinates (r, z) by the temperature T:

∂T (r, z, t)
∂t



 t=th

 = 0 ,   0 ≤ r < ∞ ,   0 < z < ∞ . (13)

Fig. 2. Evolution of the dimensionless temperature T∗  with time: 1) Z = 0, 2)
0.3, 3) 0.5, and 4) 0.7. ρ = 0 and Fos = 0.2.

Fig. 3. Change in the dimensionless time Foh of attainment of the maximum
value by the temperature Th with distance from the irradiation surface. ρ = 0
and Fos = 0.2.
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Having differentiated the solution (9)–(12) with respect to time, we obtain
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Taking into account the form of the function ϕ(ξ)  (10) and the value of the integral [19]
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upon substitution of relations (14)–(16) onto the left-hand side of condition (13) we arrive at the functional equation
for the dimensionless delay time ∆Fo:

C1C2 = exp [− (C3ρ2
 + C4Z

2)] , (17)
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Having taken the logarithm of relations (17) and (18), we represent them in the form

ρ2

α2
 + 

Z
2

β2
 = 1 ,   ρ  ≤ α ,   0 < Z ≤ β , (19)

Fig. 4. Isotherms of the maximum dimensionless temperature Th
0: 1) ∆Fo =

0.01, 2) 0.02, and 3) 0.03. Fos = 0.2.
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where

α2
 = − 

ln (C1C2)
C3

 ,   β2
 = − 

ln (C1C2)
C4

 . (20)

The semiellipse (19) with axes 2α and 2β (20) is the isotherm of a temperature maximum for prescribed di-
mensionless time parameters ∆Fos and ∆Fo (Fig. 4). The dependences of the dimensionless semiaxes α and β of the
semiellipse (19) and of their ratio β ⁄ α on the delay time ∆Fo are presented in Fig. 5a, while the dependences on the
dimensionless heating time Fos are presented in Fig. 5b. We note that the dimensional values of the axes rh and zh of
the ellipse bounding the region of hardening of steel (see Fig. 1) are equal to rh = αa and zh = βa, where a is the
radius of the heat source (7).

As the characteristic maximum temperature for carbon steels we can take the temperature Th of thermal hard-
ening. Then from the condition T(r, z, th) = Th, where the temperature T is given by relations (9)–(12), we obtain the
calculation formula for the absorption coefficient:

A = 
ThA

∗

Λ
 ; (21)

here

Fig. 5. Dimensionless axes α and β of the semiellipse of the region of thermal
hardening of steel vs. dimensionless delay time ∆Fo (a) (Fos = 0.2) and di-
mensionless irradiation time Fos (b) (∆Fo = 0.02): 1) α; 2) β; 3) β ⁄ α.

Fig. 6. Parameter A∗  (22) vs. dimensionless delay time ∆Fo for three values of
the dimensionless irradiation time: 1) Fos = 0.1, 2) 0.2, and 3) 0.3.
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and the coordinates (ρ, Z) satisfy Eqs. (19) and (20).
The dependence of the parameter A∗  (22) on the dimensionless delay time ∆Fo for different values of the di-

mensionless period of irradiation Fos is shown in Fig. 6.
Comparison to Experimental Data. Experimental results of investigations of the laser hardening of St 45

steel have been presented in [20]. A specimen in the form of a circular cylinder of diameter 20 mm and thickness 6
mm, made of St 45 steel (Th = 850oC, K = 33.5 W/(m⋅K), and k = 15⋅10−6 m2/sec), was irradiated at different sites
by pulses of an Nd:YAG glass laser in the standard regime of lasing (E = 1.5 J and rs = 2 msec). After obtaining
microsections of the formed hardened layer and etching them in an alcohol solution of nitric acid we measured the
maximum length rh and depth zh of the hardening region with an EPITYP-2 metallographic microscope (Fig. 7). It
was established that the depth of the hardened layer zh most strongly depends on the specific radiation power, which
was changed by focusing. Melting of the irradiated portions began when Q > 85⋅107 W/m2. For Q = 58⋅107 W/m2 we
have found that zh = 40 µm. From formula (8) we determined the radius of the surface heat source a = 0.64 mm and
consequently the dimensionless period of irradiation Fos = 0.073. From Eq. (17) for ρ = 0 and Z B zh

 ⁄ a = 0.062 we
found the dimensionless time of delay ∆Fo = 0.329⋅10−3. For such values of the dimensionless geometric and time pa-
rameters we obtained A∗  = 4.5 from (22) and determined the value of the absorption coefficient A = 41.8% (which is
in good agreement with experimental data [2, 3]) from (21).

CONCLUSIONS

1. Based on the solution of the boundary-value problem of heat conduction for a half-space and corresponding
experimental data on measuring the dimensions of the hardening zone, one can determine the effective absorption co-
efficient of carbon steel.

2. For St 45 steel the absorption coefficient substantially depends on the radiation intensity and is equal to
41.8% for Q = 58⋅107 W/m2.

3. In the approach to determination of the absorption coefficient proposed, we employ the isotherm bounding
the hardening region of St 45 steel. It has been noted in [18] that there can be errors introduced into the evaluation
of the temperature due to the inertia of hardening of steel. This imposes restrictions on the class of materials to which
the procedure proposed is applicable.

NOTATION

A, absorption coefficient; a, radius of the heat source; E, energy of a radiation pulse; erf (⋅), error function;
erfc (⋅) = 1 − erf (⋅); H(⋅), Heaviside unit function; J0(⋅), Bessel function of the first kind and of zero order; K and k,
thermal conductivity and thermal diffusivity; Kc, concentration coefficient; Q1 and Q2, mean-integral (over the heating
spot) intensities of the reflected and absorbed radiations respectively; Q = Q1 + Q2; q(r), intensity of the heat flux; R,

Fig. 7. Region of hardening of St 45 steel in laser irradiation.
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reflection coefficient; r and z, radial and axial components of the cylindrical coordinate system with origin at the cen-
ter of the heat source; rh and zh, semiaxes of the semiellipse bounding the region of phase transformations; ξ, integra-
tion constant in the Hankel transform; T, temperature; T∗ = T/(A⋅Λ), dimensionless temperature; Λ = Qa/K; Th,
temperature of thermal hardening of steel; t, time; th, time of formation of the region of thermal hardening of steel; ts,
period of hardening; ∆t, delay time; ρ = r/a and Z = z/a, dimensionless coordinates; Fo = kt/a2, Fos = kts ⁄ a2, ∆Fo =
k∆t ⁄ a2, and Foh = Fos + ∆Fo, Fourier numbers. Subscripts: h, hardening; s, time of switching-off of the laser; c, con-
centration.
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